1. 简述
图像指纹类算法: 值哈希算法、差值哈希算法和感知哈希算法都是值越小,相似度越高,取值为0-64,即汉明距离中,64位的hash值有多少不同。
直方图: 三直方图和单通道直方图的值为0-1,值越大,相似度越高。
2. 相关概念
图像指纹:
和人的指纹一样,是身份的象征,而图像指纹简单点来讲,就是将图像按照一定的哈希算法,经过运算后得出的一组二进制数字。
汉明距离:
假如一组二进制数据为101,另外一组为111,那么显然把第一组的第二位数据0改成1就可以变成第二组数据111,所以两组数据的汉明距离就为1
简单点说,汉明距离就是一组二进制数据变成另一组数据所需的步骤数,显然,这个数值可以衡量两张图片的差异,汉明距离越小,则代表相似度越高。汉明距离为0,即代表两张图片完全一样。
2.1 均值哈希算法
步骤
- 缩放:图片缩放为8*8,保留结构,出去细节。
- 灰度化:转换为256阶灰度图。
- 求平均值:计算灰度图所有像素的平均值。
- 比较:像素值大于平均值记作1,相反记作0,总共64位。
- 生成hash:将上述步骤生成的1和0按顺序组合起来既是图片的指纹(hash)。
- 对比指纹:将两幅图的指纹对比,计算汉明距离,即两个64位的hash值有多少位是不一样的,不相同位数越少,图片越相似。
代码实现:
#均值哈希算法
def aHash(img):
#缩放为8*8
img=cv2.resize(img,(8,8),interpolation=cv2.INTER_CUBIC)
#转换为灰度图
gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
#s为像素和初值为0,hash_str为hash值初值为
s=0
hash_str= “”
#遍历累加求像素和
for i in range(8):
for j in range(8):
s=s+gray[i,j]
#求平均灰度
avg=s/64
#灰度大于平均值为1相反为0生成图片的hash值
for i in range(8):
for j in range(8):
if gray[i,j]>avg:
hash_str=hash_str+“1”
else:
hash_str=hash_str+“0”
return hash_str
2.2 差值哈希算法
差值哈希算法前期和后期基本相同,只有中间比较hash有变化。
步骤
1. 缩放:图片缩放为8*9,保留结构,出去细节。
2. 灰度化:转换为256阶灰度图。
3. 求平均值:计算灰度图所有像素的平均值。
4. 比较:像素值大于后一个像素值记作1,相反记作0。本行不与下一行对比,每行9个像素,八个差值,有8行,总共64位
5. 生成hash:将上述步骤生成的1和0按顺序组合起来既是图片的指纹(hash)。
6. 对比指纹:将两幅图的指纹对比,计算汉明距离,即两个64位的hash值有多少位是不一样的,不相同位数越少,图片越相似。
#差值感知算法
def dHash(img):
#缩放8*8
img=cv2.resize(img,(9,8),interpolation=cv2.INTER_CUBIC)
#转换灰度图
gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
hash_str= “”
#每行前一个像素大于后一个像素为1,相反为0,生成哈希
for i in range(8):
for j in range(8):
if gray[i,j]>gray[i,j+1]:
hash_str=hash_str+"1"
else:
hash_str=hash_str+"0"
return hash_str
2.3 感知哈希算法
平均哈希算法过于严格,不够精确,更适合搜索缩略图,为了获得更精确的结果可以选择感知哈希算法,它采用的是DCT(离散余弦变换)来降低频率的方法。优点:简单快速,准确度更大,缺点:图片内容稍微添加几个字或删除几个字影响比较大
一般步骤:
- 缩小图片:32 * 32是一个较好的大小,这样方便DCT计算
- 转化为灰度图:把缩放后的图片转化为256阶的灰度图。(具体算法见平均哈希算法步骤)
- 计算DCT:DCT把图片分离成分率的集合
- 缩小DCT:DCT计算后的矩阵是32 * 32,保留左上角的8 * 8,这些代表的图片的最低频率
- 计算平均值:计算缩小DCT后的所有像素点的平均值。
- 进一步减小DCT:大于平均值记录为1,反之记录为0.
- 得到信息指纹:组合64个信息位,顺序随意保持一致性。
- 最后比对两张图片的指纹,获得汉明距离即可。
pHash代码实现:
def pHash(img):
# 感知哈希算法
# 缩放32*32
img = cv2.resize(img, (32, 32)) # , interpolation=cv2.INTER_CUBIC
# 转换为灰度图
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 将灰度图转为浮点型,再进行dct变换
dct = cv2.dct(np.float32(gray))
# opencv实现的掩码操作
dct_roi = dct[0:8, 0:8]
hash = []
avreage = np.mean(dct_roi)
for i in range(dct_roi.shape[0]):
for j in range(dct_roi.shape[1]):
if dct_roi[i, j] > avreage:
hash.append(1)
else:
hash.append(0)
return hash
interpolation - 插值方法。共有5种:
1)INTER_NEAREST - 最近邻插值法
2)INTER_LINEAR - 双线性插值法(默认)
3)INTER_AREA - 基于局部像素的重采样(resampling using pixel area relation)。
对于图像抽取(image decimation)来说,这可能是一个更好的方法。但如果是放大图像时,它和最近邻法的效果类似。
4)INTER_CUBIC - 基于4x4像素邻域的3次插值法
5)INTER_LANCZOS4 - 基于8x8像素邻域的Lanczos插值
2.4 Hash值对比, 汉明距离
由于返回值为str字符串,所以直接遍历字符串进行比对。即汉明距离,如果不相同的数据位不超过5,就说明两张图片很相似;如果大于10,就说明这是两张不同的图片。
#Hash值对比,汉明距离
def cmpHash(hash1,hash2):
n=0
#hash长度不同则返回-1代表传参出错
if len(hash1)!=len(hash2):
return -1
#遍历判断
for i in range(len(hash1)):
#不相等则n计数+1,n最终为相似度
if hash1[i]!=hash2[i]:
n=n+1
return n
直方图算法
def calculate(image1, image2):
# 灰度直方图算法
# 计算单通道的直方图的相似值
hist1 = cv2.calcHist([image1], [0], None, [256], [0.0, 255.0])
hist2 = cv2.calcHist([image2], [0], None, [256], [0.0, 255.0])
# 计算直方图的重合度
degree = 0
for i in range(len(hist1)):
if hist1[i] != hist2[i]:
degree = degree + (1 - abs(hist1[i] - hist2[i]) / max(hist1[i], hist2[i]))
else:
degree = degree + 1
degree = degree / len(hist1)
return degree
def classify_hist_with_split(image1, image2, size=(256, 256)):
# RGB每个通道的直方图相似度
# 将图像resize后,分离为RGB三个通道,再计算每个通道的相似值
image1 = cv2.resize(image1, size)
image2 = cv2.resize(image2, size)
sub_image1 = cv2.split(image1)
sub_image2 = cv2.split(image2)
sub_data = 0
for im1, im2 in zip(sub_image1, sub_image2):
sub_data += calculate(im1, im2)
sub_data = sub_data / 3
return sub_data
总结
dHash比pHash的速度要快的多。
在相同的情况下,dHash比aHash的效果要更好